報(bào)告人:王燈山 教授
報(bào)告題目:Universality of critical behavior in small-dispersion limit of the modified KdV hierarchy
報(bào)告時(shí)間:2026年1月18日(周日)上午9:30
報(bào)告地點(diǎn):云龍校區(qū)智華樓205報(bào)告廳
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報(bào)告人簡(jiǎn)介:
王燈山,理學(xué)博士,教授,博士生導(dǎo)師。2008年畢業(yè)于中國(guó)科學(xué)院數(shù)學(xué)與系統(tǒng)科學(xué)研究院,獲博士學(xué)位。曾在中國(guó)科學(xué)院物理研究所和瑞典皇家理工學(xué)院從事博士后研究,美國(guó)杜克大學(xué)、加拿大多倫多大學(xué)和新加坡國(guó)立大學(xué)訪(fǎng)問(wèn)學(xué)者。主要從事可積系統(tǒng)和漸近分析方面的研究,在Analysis & PDE, Physical Review Letters, J. Differential Equations, J. Nonlinear Science, Stud. Appl. Math.和Physica D等國(guó)際期刊發(fā)表SCI論文100余篇(其中ESI高被引論文10篇),他引3000余次;出版專(zhuān)著2部;主持國(guó)家自然科學(xué)基金面上項(xiàng)目等國(guó)家級(jí)和省部級(jí)項(xiàng)目10余項(xiàng);曾獲北京市自然科學(xué)獎(jiǎng)二等獎(jiǎng)(第一完成人)和茅以升北京青年科技獎(jiǎng),并參與獲得北京市科學(xué)技術(shù)獎(jiǎng)一等獎(jiǎng);入選北京市“科技新星”計(jì)劃、北京市“高創(chuàng)計(jì)劃”青年拔尖人才、北京市“長(zhǎng)城學(xué)者”計(jì)劃以及愛(ài)思唯爾2020-2022年中國(guó)高被引學(xué)者。
報(bào)告摘要:
In this talk, we report our recent work on the critical behavior of solutions to the modified KdV hierarchy in the small dispersion limit, focusing on the region near the gradient catastrophe point of the corresponding dispersionless system. Employing the Deift-Zhou nonlinear steepest descent method for the associated Riemann-Hilbert problem, we rigorously derive a complete double-scaling asymptotic expansion for the solution. The first correction term beyond the dispersionless approximation is universally governed by the smooth solution of the second member of the Painleve I hierarchy. This further confirms Dubrovin’s universality assertion that such Painlevetype transcendents universally characterize the critical behavior near a gradient catastrophe for Hamiltonian perturbations of hyperbolic equations.